
On the Design of High Speed Parallel CRC
Circuits using DSP Algorithams

1 B.Naresh Reddy, 2 B.Kiran Kumar, 3 K.Mohini sirisha

1Dept.of ECE ,Kodada institute of Technology & Science for women,kodada,india

2,3 Dept.of ECE ,GIST,Jagayyapeta,india *

Abstract — Error correction codes provide a mean to detect
and correct errors introduced by the transmission channel.
Basically there are two categories of codes a).Block codes and
b).convolution codes. Both the codes introduce redundancy by
adding parity symbols to the message data. Cyclic redundancy
check (CRC) codes are the subset of the cyclic codes.
The hardware implementation of a CRC is a simple linear
feedback shift register. LFSR circuit is simple and can runs at
very high clock speeds, but it suffers from the limitation that
the stream must be of bit-serial. CRC architectures for the
generator polynomial are developed using DSP algorithms
such as pipelining, unfolding and retiming. CRC architectures
are first pipelined to reduce the iteration bound by using novel
look-ahead pipelining methods and then unfolded and retimed
to design high-speed parallel circuits. High-Speed parallel
CRC increases the speed or throughput rate up to 25% when
compared to the other techniques and reduce the hardware
cost.

Keywords— Cyclic redundancy check (CRC), linear feedback
shift register (LFSR), pipelining, retiming, unfolding.

I. INTRODUCTION

Error correction codes provide a mean to detect and correct
errors introduced by the transmission channel. CRC is a
very powerful and easily implemented technique to obtain
data reliability. Even if error correcting codes exists, their
use is limited, like when the channel is simplex, where
retransmissions cannot be requested. Most often error
detection followed by retransmission is preferred because it
is more efficient. The CRC technique is used to verify the
integrity of blocks of data called Frames. Using this
technique, the transmitter appends an extra n bit sequence
to every frame called Frame Check Sequence (FCS). FCS
holds redundant information about the frame that helps the
receiver detect errors in the frame.
Cyclic redundancy check (CRC) is widely used to detect
errors in data communication and storage devices. When
high-speed data transmission is required, the general serial
implementation cannot meet the speed requirement. Since
parallel processing is a very efficient way to increase the
throughput rate, parallel CRC implementations have been
discussed extensively in the past decade [1], [2]. Although
parallel processing increases the number of message bits
that can be processed in one clock cycle, it can also lead to
a long critical path (CP); thus, the increase of throughput
rate that is achieved by parallel processing will be reduced
by the decrease of circuit speed. Another issue is the
increase of hardware cost caused by parallel processing,
which needs to be controlled. This brief addresses these two
issues of parallel CRC implementations.CRC architectures
for the generator polynomial are developed using DSP

algorithms such as pipelining, unfolding and retiming. The
architectures are first pipelined to reduce the iteration
bound by using novel look-ahead techniques and then
unfolded and retimed to design high speed parallel circuits.
A. Existing System
In the past recursive formulas have been developed for
parallel CRC hardware computation based on mathematical
deduction. They have identical CPs. The parallel CRC
algorithm in [2] processes an m-bit message in (m+k)/L
clock cycles, where k is the order of the generator
polynomial and L is the level of parallelism. However, in
[1], m message bits can be processed in m/L clock cycles.
High-speed architectures for parallel long Bose–
Chaudhuri– Hocquenghen (BCH) encoders in [3] and [4],
which are based on the multiplication and division
computations on generator polynomial, are efficient in
terms of speeding up the parallel linear feedback shift
register (LFSR) structures. They can also be generally used
for the LFSR of any generator polynomial. However, their
hardware cost is high.
B.Proposed System

The proposed design starts from LFSR, which is generally
used for serial CRC. An unfolding algorithm is used to
realize parallel processing. However, direct application of
unfolding may lead to a parallel CRC circuit with long
iteration bound, which is the lowest achievable CP. Two
novel look-ahead pipelining methods are developed to
reduce the iteration bound of the original serial LFSR CRC
structures; then, unfolding algorithm is applied to obtain a
parallel CRC structure with low iteration bound. The
retiming algorithm is then applied to obtain the achievable
lowest CP.

II. DESIGN OF ARCHITECTURES USING DSP

TECHNIQUES

A.Algorithm for unfolding:
 1. For each node U in the original DFG, draw J node U0,
U1, U2,…. UJ-1.
 2. For each edge U V with w delays in the original
DFG, draw the J edges

 JwiVU i 0
0)(with (Jwifloor /)()

delays for i = 0, 1, …, J-1.

 Consider the CRC architecture with the generator
polynomial , which is shown in Fig. 1. After applying an
unfolding algorithm [5] with unfolding factors and , we
obtain the two-parallel and three-parallel architectures
shown in Figs. 3 and 4, respectively.

B.Naresh Reddy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5254-5258

5254

Fig 1. CRC Architecture For G(y)=1+y+y3+y5

Assume the Xor gates as 1, 2 and 3 nodes

Fig 2.Data flow graph of Figure 1

After applying the unfolding technique with unfolding
factor J=2 two-parallel architecture are obtained. To unfold
the above data flow graph by an unfolding factor 2, the 6
nodes1, 2, 3, 4, 5, 6 are first drawn according to the first
step of the unfolding algorithm. After these nodes have
been drawn the 2nd step of the unfolding algorithm needs to
be performed. For an edge UV with no delays this step
reduces to drawing the J edges UiVi with no delays for
i=0,1,…J-1.For example, edge with 31 with no delay in
figure 3 results 31 and 64 with no delays in the 2-
unfolded data flow graph in figure 3.3. For the edge 12
with w=2 delays in figure 3.2 draw the edges 12 (2+0)%2
with floor((2+0)/2) delays and 12(2+1)%2 with
floor((2+1)/2) delays which correspond to the edges 12
with 1 delay and 45 with 1 delay respectively in figure
3.Iteration bound is defined as the maximum of all the loop
bounds. Loop bound is defined as t/w, where t is the
computation time of the loop and w is the number of delay
elements in the loop [5].

Fig 3. Two parallel CRC Architecture For G(y)=1+y+y3+y5

Fig 4. Three - parallel CRC Architecture For G(y)=1+y+y3+y5

It is obvious that the iteration bounds for the CRC
architectures in Figs. 1–4 and ,
respectively, where is the computation time of an
XOR gate. In this case, the iteration bound of a -parallel
CRC architecture for G(y)=1+y+y3+y5 is . Although
retiming is used to reduce the critical path of a circuit, but
cannot achieve a CP with a computation time that is less
than the iteration bound of this circuit. In other words,
the CP of a parallel CRC architecture cannot be less than
J.T∞, where J is the level of parallelism and T∞ is the

iteration period bound of the original data flow graph.
Therefore, it is very important to reduce the iteration bound
before the unfolding algorithm is applied.
B.Algorithm for Pipelining:
 Effective critical path is reduced by introducing
pipelining latches along the critical data path either to
increase the clock frequency or sample speed or to reduce
power consumption at the same speed. It is done using a
look-ahead pipelining algorithm to reduce the iteration
bound of the CRC architecture
 Consider the CRC circuit with generator polynomial
1+y+y8+y9 .Its iteration bound is 2Txor which corresponds
to the section in the dashed squre and the term y8+y9 in the
generator polynomial.

Fig 5 CRC Architecture For G(y)=1+y+y8+y9

Fig 6. Loop bound of 2Txor

The largest iteration bound of a general serial architecture is
also 2Txor. For example, the serial architectures of
commonly used generator polynomials CRC-16 and CRC-
12 have the iteration bound of 2Txor because they have
terms y15 +y16 and y11+y12 in their generator polynomials
respectively. The critical Loop with the delayed input
redrawn in figure 6 is described by
)1()()()1(nbnynana (1)

There are two types of pipelining. 1) Proposed look ahead
pipelining 2). Improved look ahead pipelining.

1).Proposed look ahead pipelining: In this section, we
propose a look-ahead pipelining algorithm to reduce the
iteration bound of the CRC architecture. If we apply Look
ahead pipelining to (1) we can obtain a two level pipelined
version given by

)2()1()1()2(nbnynana

)1()2()1()()()2(nynbnbnynana (2)

The architecture for (2) is shown in figure 7

Fig(7).Pipelined Loop with a Loop bound TXOR

In Fig. 7, we can see that the loop bound in Fig. 5 has been
reduced from to at the cost of two XOR gates
and two flip-flops. The CRC architecture in Fig. 5 can now
be pipelined as shown in Fig. 8.

B.Naresh Reddy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5254-5258

5255

Fig 8.Two level pipelined CRC structure for G(y)=1+y+y8+y9

The above figure 8 shows two level pipelined CRC circuit
with generator polynomial 1+y+y8+y9. The loop bound in
figure 7 is reduced from 2Txor to Txor at the cost of two
XOR gates and two flip flops. In figure 8 the loop bounds
of loop1 and loop2 are Txor and 5/8 Txor respectively. So,
the iteration bound of the two level pipelined CRC
architecture is Txor.

2).Improved look ahead pipelining: Consider the CRC
architecture for polynomial G(y)=1+y+y7+y9 .

Fig 9. CRC Architecture for G(y)=1+y+y7+y9

Fig 10. Loop bound of Txor

Loop 1 in Fig. 8 can be represented as shown in Fig.10
Consider the inner loop marked by the dashed square in
Fig. 9. This loop can be redrawn as shown in Fig. 10 and
can be represented by

)2()()()2(nbnynana (3)

If we Apply improved look ahead pipelining technique to
(3) we can obtain the four level pipelined structures.

)4()2()2()4(nbnynana

)4()2()2()()()4(nbnynbnynana

(4) The architecture for (4) is shown in figure 11.In figure
11 we can see that four level pipelining can be achieved at
the cost of two Xor gates and two flip-flops if the there are
two delay elements in the initial loop.However, in the
proposed pipelining method 1,four level pipelining can be
achieved at the cost of four Xor gates and four flip-flops.

 Fig 11. Pipelined Loop wih a loop bound of ()

The CRC architecture in figure 9 can be pipelined as shown
in figure 12.In figure 12 we can see that the loop bounds of
loop 1 and loop 2 are (1/2) and (5/8) ,
respectively So the iteration bound of four-level pipelined
CRC architecture is (5/8) . Use of four level pipelining
reduces the iteration bound of figure 9 from TXOR to

(5/8)TXOR at the cost of two XOR gates and two delay
elements.

 Fig 12. Four level pipelined CRC Architecture for

G(y)=1+y+y7+y9

 Consider the LFSR representation of four level
pipelined structure. Let’s assume that the Xor gates as
1,2,3,4 & 5 nodes as shown in figure 3.13, After apply the
Unfolding algorithm we can obtain the figure 3.14.

Fig 13. Data flow graph of four level pipelined structure

Fig 14.LFSR representation of unfolded architecture for four-level

pipelined circuit.

If we perform four-level pipelining to Fig. 5 by the
proposed pipelining method 2, as shown in Fig. 15, we need
four extra XOR gates in loop 2, instead of six, as needed by
method 1. Thus, the loop bound of loop 2 is reduced

from to and the iteration bound is also

reduced from to two XOR gates are

saved.

Fig 15. Improved four-level pipelined CRC architecture for G(y)) =

981 yyy

For the CRC circuit in figure 15 let the message sequence
be 101011010. Table I shows the data flow at the marked
points of this architecture at different time slots. In Table I,
we can see that the achieved four-level pipeline introduces a
latency of three clock cycles. However, this is not a
drawback, when the message bits are long.

B.Naresh Reddy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5254-5258

5256

C.Retiming Algorithm
 It is a technique used to change the locations of delay
elements in a circuit without affecting the input/output
characteristics of the circuit. Retiming has many
applications in synchronous circuit design. These
applications include reducing the clock period of the circuit,
reducing the number of registers in the circuit, reducing the
power consumption of the circuit and logic synthesis. It can
be used to increase the clock rate of a circuit by reducing
the computation time of the critical path. Let

ntM max maxwhere t max is the maximum computation

time of the nodes in G and n is the no. of nodes in G. Form
a new graph G’ which is the same as G except the edge
weights are replaced by)()()(' uteMweW for all

edges VU Solve the all-pairs shortest path problem on
G’. This solution can be found using the Floyd-Warshall
algorithm Let S’ uv be the shortest path from VU If U!

= V then)/'(),(MSceilVUW UV and

)('),(),(VtSVUMWvuD UV

 If U=V then 0),(VUW and)(),(utVUD .

The values of),(VUW and),(VUD are used to

determine if there is a retiming solution that can achieve a
desired clock period. Given a desired clock period c, there

is a feasible retiming solution r such that cG r)(if the

following constraints hold.After we apply pipelining to the
original serial CRC architecture, the minimum achievable
CP (iteration bound) of the unfolded CRC architecture is
reduced. In this section, we carry out retiming for minimum
CP to obtain fast parallel CRC architectures by using the
example in Fig.15. Applying three-parallel unfolding to Fig.
15, we obtain the design in Fig. 16, where all the numbered
nodes (1),(2),…….represent XOR gates. If the input
sequence is 101011010, we can get the data flow of Fig. 16,
as shown in Table II. We can see that four clock cycles are
needed to encode a 9-bit message. It is obvious that the CP
of Fig. 16 is 5 . After we apply retiming to it, its CP can
be reduced to , which is shown in Fig. 17. If the input
sequence is still 101011010, we can get the data flow of
Fig. 17, as shown in Table III.

Fig 16. Three-parallel CRC architecture for the Figure 15 after unfolding

Note that as shown in Fig. 12, when the pipelining level
increases,the loop bound of loop 2 will become larger than
that of loop 1. Increasing the pipelining level will increase
the loop bound of loop 2 and thus increase the iteration
bound. The iteration bound of Fig. 15 can be further
reduced if we move the XOR gate of y(n+2) from loop 2 to
loop 1.

Fig 17. Retimed three-parallel CRC architecture for fig 15.

In Fig 17, we can see that the given solution requires 21
XOR gates to achieve a CP of 3Txor by four-level
pipelining. However, two-level pipelining would be enough
to get a CP of 3Txor, which leads to a three-parallel
solution requiring only 15 XOR gates. The preceding
example is only used to illustrate the complete procedure of
how to apply proposed design based on method 2.

TABLE I
DATA FLOW OF FIG. 15 WHEN THE INPUT MESSAGE IS
101011010
clock y(3k) y(3k+1) (3k+2) x0 x1 x2 x3 x4 x5 x6 x7 x8

1
2
3
4
5
6
7
8
9
10
11
12

1 0 0
0 1 0
1 0 0
0 1 1
1 0 0
1 1 1
0 1 0
1 0 1
0 1 1
0 0 0
0 0 1
0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0
1 1 0 1 0 1 0 0 1
0 1 1 0 1 0 1 0 0
0 0 1 1 0 1 0 1 0
1 1 0 1 1 0 1 0 0
0 1 1 0 1 1 0 1 0

 TABLE II
DATA FLOW OF FIG. 16 WHEN THE INPUT MESSAGE IS 101011010

clock y(3k) y(3k+1) (3k+2) x0 x1 x2 x3 x4 x5 x6 x7 x8
1
2
3
4

1 0 1
0 1 1
0 1 0
0 0 0

0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 1 1 0 1 0 1 0 0
0 1 1 0 1 1 0 1 0

TABLE IIII
DATA FLOW OF FIG. 17 WHEN THE INPUT MESSAGE IS 101011010

clock y(3k) y(3k+1) (3k+2) x0 x1 x2 x3 x4 x5 x6 x7 x8
1
2
3
4
5

1 0 1
0 1 1
0 1 0
0 0 0
0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 1 1 0 1 0 1 0 0
0 1 1 0 1 1 0 1 0

In Table I, we can see that the achieved four-level pipeline
introduces a latency of three clock cycles. However, this is
not
a drawback, when the message bits are long. Compared
with Table II, Table III shows a latency of one more clock
cycle caused by retiming. One may be led to believe that
three-parallel design does not process 3 bits of the message
efficiently because encoding a 9-bit message requires five
clock cycles. In real applications, the message length will
be much longer than 9 bits. For example, if the message is
90 bits long, the CRC architecture in Fig. 3.22 will take

B.Naresh Reddy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5254-5258

5257

30+2=32 clock cycles to encode it. It is obvious that 90/32
is very close to 3.

III. RESULTS AND ANALYSIS
 Each architecture is coded in Verilog and simulated. The
simulation results and the netlist simulation are verified for each
architecture. For the message bits: 101011010 and for the
generator polynomial 1+y+y8+y9

Fig 18.Retimed three parallel CRC Architecture for improved four level

pipelined CRC architecture.

Fig.18 shows the simulated results of the retimed CRC circuit
with generator polynomial 1+y+y8+y9. It is the retimed version
for unfolded and further improved pipelined implementation.
There is a latency of two clock cycles. For every positive edge of
the clock one input has given. Input is applied through “data”
port of the CRC design. Clock is applied through “clk” port.
Reset signal is applied through “rst”. Initially upon the reset
status the contents of the CRC circuit are zeroes. So initial output
is Zero. After reset is removed for every clock the input data bit
is processed to obtain the out put. But for very first two clock
cycles after reset is removed output is not obtained because of
the latency. If we observe the waveform after 5 clock cycle for
the applied input data “10101101” the out put is “0B6”. The
clock period has decreased considerably with this retimed
implementation.Table IV ,V&VI shows the no.of clock
cycles,critical paths & iteration bounds of the different CRC
circuits.

Table IV: Clock cycles of CRC circuits
Architecture No.of clk cycles

Original architecture 9

2-level pipelined 10
4-level pipelined 12

Retiming after pipelining 12
Unfolding the 4-level Pipelined 4

Retiming the unfolded architecture 5
Table V: Critical path of CRC circuits

Architecture Critical path
Unfolding the 4-level Pipelined 5

Retiming the unfolded architecture 3

TABLE VI: CLOCK CYCLES OF CRC CIRCUITS

Architecture Iteration bound
Original architecture

2-level pipelined
4-level pipelined & Retiming

V. CONCLUSION

Generally when high-speed data transmission is required
serial implementation is not preferred because of slow
throughput. So parallel implementation is preferred which
takes less time.This project explains the unfolding,
pipelining and retiming methods used in high-speed parallel
CRC implementation. Basically, serial CRC circuits have
high iteration bound. In order to decrease the iteration

bound of serial CRC novel look-ahead pipelining technique
is used, then apply the unfolding algorithm to obtain the
parallel CRC circuit. Converting serial CRC to parallel
CRC increases the critical path. To reduce the critical path
apply the retiming algoritham.By applying pipelining,
unfolding and retiming to serial CRC throughput rate or
speed can be increased.This project is implemented using
Verilog HDL language on the Xilinx tool.

VI. FUTURE WORK

The future scope of this project involves analyzing the effects of
pipelining depth on the hardware increase and the timing
optimizations we get. This can be done by applying different
levels of pipelining for the standard crc polynomials and
concluding the results respect to hardware and timing issues. Also
the design can be analyzed for different levels of unfolding factors
to discuss the hardware overhead involving in different parallelism
levels.

REFERENCES
 [1]. G. Campobello, G. Patané, and M. Russo, “Parallel CRC realization,”

IEEE Trans. Comput., vol. 52, no. 10, pp. 1312–1319, Oct. 2003.
[2]. K. K. Parhi, VLSI Digital Signal Processing Systems: Design and

Implementation. Hoboken, NJ: Wiley, 1999.
 [3]. T. V. Ramabadran and S. S Gaitonde, “A tutorial on CRC

computations,” IEEE . Micro, vol. 8, no. 4, pp. 62–75, Aug. 1988
[4] Athenaeum, Andrew S. Computer Networks, Second Edition.

Prentice Hall, 1988.
[5] . K. K. Parhi, “Eliminating the fan-out bottleneck in parallel long

BCH encoders,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51,
no. 3, pp. 512–516, Mar. 2004.

 [6]. X. Zhang and K. K. Parhi, “High-speed architectures for parallel
long BCH encoders,” in Proc. ACM Great Lakes Symp. VLSI,
Boston, MA, Apr. 2004, pp. 1–6.

[7] W.W.Peterson, D.T.Brown, “Cyclic Codes for Error Detection,” Proc.
IRE, Jan. 1961.

[8] A.S.Tanenbaum, Computer Networks. Prentice Hall, 1981.
[9] W.Stallings, Data and Computer Communications. Prentice Hall,

2000.
[10] T. D. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A dynamic

voltage scaled microprocessor system,” IEEE J. Solid-State
Circuits, vol.35, no. 11, pp. 1571–1580, Nov. 2000.

1. Mr.B.Naresh Reddy is presently working as Asst.Prof in

KITS Kodada, A.P. His area of intrest are digital signal
Processing and communication

2. Mr.B.Kiran Kumar is presently working as Asst.Prof in
GITS ,Jagayapeta ,A.P. His area of intrest are digital signal
Processing and communication

3. Ms.K.Mohini Sirisha is presently working as Asst.Prof in
GITS ,Jagayapeta ,A.P. Her area of intrest are digital signal
Processing and communication

B.Naresh Reddy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5254-5258

5258

